Earth-Sun Relationships

The purposes of this lab are to gain an understanding of the relationships between the Earth and the Sun. All weather and climate on our Earth begins with the sun. Solar radiation is the major source of energy that determines what the conditions will be on the Earth's surface, as well as in the atmosphere. This lab will also consider the variability of sunlight received annually at different latitudes.

There are two primary movements of the Earth: rotation and revolution. Rotation refers to the spinning of the Earth from west to east upon its axis once in approximately every 24 hours. Revolution refers to the movement of the Earth along an elliptical path around the Sun once every $365 \frac{1}{4}$ days (approximately). As shown in Figure 1.3, the Earth's orbit is not an even circle, but rather an elliptical orbit with the Earth closest to the Sun in early January (91.5 million miles away), called the perihelion, and farthest away in early July (94.5 million miles away), called the aphelion.

Figure 2.1 Earth's Elliptical Orbit

These movements (rotation and revolution) combined with the tilt of the Earth's axis relative to the orbital plane contribute to the daily and seasonal fluctuations in the amount of solar radiation for different locations. Figure 2.1 illustrates the annual motion of the Earth as it revolves around the sun and lists the seasons based on the northern hemisphere perspective. Only four positions of the Earth in its annual elliptical orbit are shown: December 22, the winter solstice; March 21, the vernal or spring equinox; June 21, the summer solstice; September 23, the autumnal equinox. The plane of the ecliptic is the imaginary plane composed of all points in the Earth's orbit, which also pass through the sun. The Earth's axis is inclined at an angle of $231 / 2^{\circ}$ to the vertical drawn to a plane of the ecliptic.

Note that in Figure 2.1 the Earth's axis always remains parallel to itself throughout the annual orbit, i.e. it is always tilted in the same direction. This parallelism of the axis produces the seasons. There is greater heating of the surface when the sun is directly overhead, i.e. the sun's rays are perpendicular to the surface. The latitude at which the sun is directly overhead changes continuously in an annual cycle as the Earth moves in its orbit around the sun. The sun appears to move from northern latitudes to the equator to southern latitudes and back to the equator and northern latitudes. This apparent motion of the sun (although it is the Earth that moves) may be observed in northern latitudes as the sun in our winter is low in the sky even at noon while the noon sun in our summer sky is high (Figure 2.2).

Figure 2.2 Northern Sun Path

Copyright © Addison Wesley

As seen from the point of view of an observer at a northern mid-latitude, Figure 2.2 traces the path of the sun across the sky during the year.

From this diagram it becomes clear that in northern latitudes in winter the days are shorter and the sun arcs south and low across the sky. Conversely, in summer the days are longer and the sun arcs high but still south. At the equinoxes the sun rises due east and sets due west (in the summer it rises and sets closer to the northeast and northwest and in winter it rises and sets closer to the southeast and southwest).

Figure 2.3 provides a more detailed view of the June 21 orbital position of the Earth. Note two important observations:
i) How the inclination of the Earth's axis influences the angle at which the sun's rays strike the surface.
ii) How the inclination of the Earth's axis and the angle at which the sun's rays strike the surface determine the relative amount of day and night.

Figure 2.3 June 21 Orbital Position
Circle of Illumination June Solstice

The Tropic of Cancer ($231^{1 / 2}{ }^{\circ} \mathrm{N}$) and the Tropic of Capricorn ($231 / 2^{\circ} \mathrm{S}$) represent the maximum distance north and south of the equator that the sun's rays may be perpendicular to the surface of the Earth. The sun is directly overhead (the vertical noon sun) at the Tropic of Cancer on June 21 (Northern Hemisphere summer solstice). The sun is directly overhead at the Tropic of Capricorn on December 22 (northern hemisphere winter solstice). The sun is directly overhead at the Equator on March 21 (Vernal Equinox) and September 23 (Autumnal Equinox). The Arctic Circle ($661^{1 / 2}{ }^{\circ} \mathrm{N}$) and Antarctic Circle $\left(661^{1} 2^{\circ} \mathrm{S}\right)$, mark the limit of the possibility of 24 hours of darkness or light.

Internet Resources for Earth-Sun Relationships

1. US Naval Observatory: Sun and Moon information http://aa.usno.navy.mil/data/ http://aa.usno.navy.mil/data/docs/RS OneDay.html

2. Sandburg Center for Sky Awareness daylight calculator http://www.wsanford.com/~wsanford/daylight/calculator.html
3. Earth-sun relationship http://www.physicalgeography.net/fundamentals/6h.html
4. NOAA: Sunrise/Sunset Calculator
http://www.srrb.noaa.gov/highlights/sunrise/sunrise.html
5. Royal Observatory, Greenwich http://www.rog.nmm.ac.uk/

Exercise \#2 Lab Activity Name:

Earth-Sun Relationships
 Lab Section:

Please show your work. If necessary please use additional paper to show work.

1a) Consider building a house in Massachusetts. In order to gain maximum sunlight in your living room, which direction should the window face? \qquad Why?
b. If you were building a house in Santiago Chile and wanted maximum sunlight in the living room, what direction should your window face? \qquad
Why?
2) When (what date) is the Sun directly overhead of:
a. The Tropic of Capricorn \qquad
b. The Tropic of Cancer \qquad
c. The Equator
d. The Arctic Circle
8) Give the latitude and the significance of:
a. The Tropic of Capricorn:
b. The Tropic of Cancer:
c. The Arctic Circle
d. The Antarctic Circle

The Arctic \& Antarctic Circles

The Arctic Circle $\left(661^{1 / 2}{ }^{\circ} \mathrm{N}\right)$ and Antarctic Circle $\left(66{ }^{1 / 2}{ }^{\circ} \mathrm{S}\right)$, mark the limit of the possibility of 24 hours of darkness or light. For other latitudes we can roughly establish the length of day by first determining the proportion of the parallel that is in the light zone. The same proportion of 24 hours would be daylight.

Q 4) Notice the relative length of daylight in the northern and southern hemispheres on June 21 in Figure 2.3. On June 21 what might the daylight situation be at:
a. The Arctic Circle:
b. The Equator:
c. Antarctic Circle: \qquad
(5) Six months later on December 22 what might the daylight situation be at:
a. The Arctic Circle:
b. The Equator:
c. Antarctic Circle: \qquad

Q (6) Usually we think of the seasons of the year as they occur in the Northern Hemisphere. Determine when the following seasonal positions occur in the Southern Hemisphere. List the dates.
a. Vernal Equinox \qquad
b. Autumnal Equinox \qquad
c. Winter Solstice \qquad
d. Summer Solstice

Length of Daylight Period

We will be using three maps with the circle of illumination to determine hours of light and darkness for different places on Earth. Two maps already have the circle of illumination drawn on them. You will plot the circle of illumination on map \#2 using the Winter Solstice data above.

Plot the latitude and longitude locations above on Map 2 below (note how maps 1 and 3 were plotted using the data above). Carefully connect the locations with a smooth curved line to show where the circle of illumination is. This procedure should result in a smooth set of curves without irregularities. Lightly shade in the regions to the left and the right of the circle of illumination. These areas depict the nighttime.

On these maps, each 15 degrees increment of longitude is equal to 1 hour of time. Thus by counting the 15 degree increments from the left side of the circle of illumination to the right side along a selected line of latitude, you can determine the duration of daylight hours for anyplace on Earth along that line of latitude, and you can do this for any line of latitude on the Earth. During the equinoxes, the number of 15 degree increments is always the same -12 . Thus, on those two days everywhere on Earth (except at the two Poles) will have 12 hours of daylight and 12 hours of darkness.

Example: New Orleans, LA: $30^{\circ} \mathrm{N}$ on June 21.
For the Summer Solstice, count the number of 15 degree increments from the left side of the circle of illumination to the right side along latitude $30^{\circ} \mathrm{N}$. There are 14 , thus the duration of
sunlight is 14 hours for New Orleans. On the winter solstice, there are only 10 increments, thus 10 hours of daylight.
7. Determine the length of daylight at the following locations for the June solstice, December solstice, and equinox.

Place (approximate degrees)
Barrow, AK ($71^{\circ} \mathrm{N}$)
Salem, MA ($43^{\circ} \mathrm{N}$)
Riyadh, SA $\left(25^{\circ} \mathrm{N}\right)$
Singapore ($1^{\circ} \mathrm{N}$)
Cape Town, SA (340 S)
Vostok, Antarctica (790 S)

June Solstice
\qquad
\qquad
\longrightarrow
\qquad
\qquad
\qquad

December Solstice
\qquad Equinox
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
8. It should become apparent that as you go northward from the equator in the summer, the daylight hours become \qquad and in the winter the daylight hours become \qquad as you travel northward.
9. How many hours of daylight are there at the Equator in each of the seasons?
10. Using what you know about latitude and length of daylight, describe the weather and amount of daylight you would expect to encounter:
a. In Vostok in July?
b. In Vostok in February?
c. In Barrow in July?
d. In Barrow in February?
e. What is the major difference in the climate at the two locations?
f. Can you think of a factor that does not involve latitude or length of daylight that might further explain the climatic differences between the two locations?

WEATHER \& CLIMATE
SALEM STATEUNIVERSITY

Map 1: June 21
Summer Solstice in the Northern Hemisphere / Winter Solstice in the Southern Hemisphere

WEATHER \& CLIMATE
SALEM STATEUNIVERSITY

Map 2:

December 22

Winter Solstice in Northern Hemisphere / Summer Solstice in the Southern Hemisphere

WEATHER \& CLIMATE
SALEM STATEUNIVERSITY

Map 3:

March 21 \&

September 21

Spring and Fall Equinoxes for both Hemispheres

